Senin, 05 Desember 2011

Lingkaran

Pengertian Lingkaran

Lingkaran adalah kedudukan titik-titik yang jaraknya sama terhadap titik tertentu.

Yang dimaksud titik tertentu di sini adalah titik pusat, sedangkan jaraknya sama di sini maksudnya adalah jari-jari lingkaran.


Misalkan diberikan sebuah lingkaran dengan pusat(0, 0) sebagai berikut













Dari gambar yang ada maka dapat disimpulkan dengan pythagoras sebagai berikut
x2 + y2 = R2

Jika lingkaran memiliki pusat (a, b) maka bisa digambar sebagai berikut










dengan menggunakan rumus pithagoras maka bisa diambil kesimpulan sebagai berikut


(x - a)2 + (y - b)2 = R2


Definisi sudut pusat :

Sudut pusat adalah daerah sudut yang dibatasi oleh dua jari-jari lingkaran yang titik sudutnya merupakan titik pusat lingkaran.
Pada gambar lingkaran dengan pusat titik O, terdapat AOC yang dibatasi oleh dua jari-jari yaitu OA dan OC.
AOC disebut sudut pusat.

 Definisi sudut keliling :

Sudut keliling adalah daerah sudut yang dibatasi oleh dua talibusur yang berpotongan di satu titik pada lingkaran dan titik sudutnya teletak pada keliling lingkaran.
Pada gambar lingkaran berpusat di titik O, terdapat dua tali busur AB dan BC yang berpotongan dan membentuk ABC.
ABC merupakan sudut keliling dan menghadap busur AC

Definisi busur lingkaran :

Busur lingkaran adalah garis lengkung bagian dari keliling lingkaran yang menghubungkan dua titik pada lingkaran.
Pada gambar ingkaran berpusat di titik O, terdapat titik A dan C di keliling lingkaran. Garis lengkung yang menghubungkan titik A dan C disebut busur lingkaran

Definisi juring lingkaran :

Juring lingkaran ( sektor ) merupakan daerah yang dibatasi oleh dua jari-jari dan busur lingkaran
Pada gambar daerah yang diarsir merupakan juring lingkaran.
Juring AOB dibatasi oleh dua jari-jari OA dan OB, serta busur AB

Pada sebuah lingkaran seperti tampak pada gambar, tedapat dua jenis busur dan dua jenis juring.
Busur AB yang panjangnya kurang dari setengah keliling lingkaran disebut  busur kecil dan juring yang
 
luasnya kurang dari setengah luas lingkaran disebut juring kecil.
Sebaliknya busur AB yang panjangnya lebih dari setengah keliling lingkaran disebut busur besar dan juring yang luasnya lebih dari setengah luas lingkaran  disebut juring besar

Elemen lingkaran

Elemen-elemen yang terdapat pada lingkaran, yaitu sbb:
  • n sebuah titik di dalam lingkaran yang menjadi acuan untuk menentukan jarak terhadap himpunan titik yang membangun lingkaran sehingga sama. JElemen lngkiaran yang berupa titik, yaitu :
    1. Titik pusat (P)
      merupakan jarak antara titik pusat dengan lingkaran harganya konstan dan disebut jari-jari.
  • Elemen lingkaran yang berupa garisan, yaitu :
    1. Jari-jari (R)
      merupakan garis lurus yang menghubungkan titik pusat dengan lingkaran.
    2. Tali busur
      merupakan garis lurus di dalam lingkaran yang memotong lingkaran pada dua titik yang berbeda (TB).
    3. Busur (B)
      merupakan garis lengkung baik terbuka, maupun tertutup yang berimpit dengan lingkaran.
    4. Keliling lingkaran (K)
      merupakan busur terpanjang pada lingkaran.
    5. Diameter (D)
      merupakan tali busur terbesar yang panjangnya adalah dua kali dari jari-jarinya. Diameter ini membagi lingkaran sama luas.
  • Elemen lingkaran yang berupa luasan, yaitu :
    1. Juring (J)
      merupakan daerah pada lingkaran yang dibatasi oleh busur dan dua buah jari-jari yang berada pada kedua ujungnya.
    2. Tembereng (T)
      merupakan daerah pada lingkaran yang dibatasi oleh sebuah busur dengan tali busurnya.
    3. Cakram (C)
      merupakan semua daerah yang berada di dalam lingkaran. Luasnya yaitu jari-jari kuadrat dikalikan dengan pi. Cakram merupakan juring terbesar.

 Persamaan

Suatu lingkaran memiliki persamaan
(x - x_0)^2 + (y - y_0)^2 = R^2 \!
dengan R\! adalah jari-jari lingkaran dan (x_0,y_0)\! adalah koordinat pusat lingkaran.

 Persamaan parametrik

Lingkaran dapat pula dirumuskan dalam suatu persamaan parameterik, yaitu
x = x_0 + R \cos(t) \!
y = y_0 + R \sin(t) \!
yang apabila dibiarkan menjalani t akan dibuat suatu lintasan berbentuk lingkaran dalam ruang x-y.

 Luas lingkaran

Luas lingkaran
Luas lingkaran memiliki rumus
A = \pi R^2 \!
yang dapat diturunkan dengan melakukan integrasi elemen luas suatu lingkaran
dA = rd\theta\ dr
dalam koordinat polar, yaitu
\int dA = \int_{r=0}^R \int_{\theta=0}^{2\pi} 
rd\theta\ dr
= \int_{r=0}^R rdr \int_{\theta=0}^{2\pi} d\theta 
= \frac 1 2 (R^2-0^2) \ (2\pi-0) = \pi R^2 \!
Dengan cara yang sama dapat pula dihitung luas setengah lingkaran, seperempat lingkaran, dan bagian-bagian lingkaran. Juga tidak ketinggalan dapat dihitung luas suatu cincin lingkaran dengan jari-jari dalam R_1\! dan jari-jari luar R_2\!.

 Penjumlahan elemen juring

Area of a circle.svg
Luas lingkaran dapat dihitung dengan memotong-motongnya sebagai elemen-elemen dari suatu juring untuk kemudian disusun ulang menjadi sebuah persegi panjang yang luasnya dapat dengan mudah dihitung. Dalam gambar r berarti sama dengan R yaitu jari-jari lingkaran.

Luas juring

Luas juring suatu lingkaran dapat dihitung apabila luas lingkaran dijadikan fungsi dari R dan θ, yaitu;
A(R,\theta) = \frac 1 2 R^2 \theta \!
dengan batasan nilai θ adalah antara 0 dan . Saat θ bernilai , juring yang dihitung adalah juring terluas, atau luas lingkaran.

Luas cincin lingkaran

Suatu cincin lingkaran memiliki luas yang bergantung pada jari-jari dalam R_1\! dan jari-jari luar R_2\!, yaitu
A_{cincin} = \pi (R_2^2 - R_1^2) \!
di mana untuk R_1 = 0\! rumus ini kembali menjadi rumus luas lingkaran.

 Luas potongan cincin lingkaran

Dengan menggabungkan kedua rumus sebelumnya, dapat diperoleh
A_{potongan\ cincin} = \frac \pi 2 (R_2^2 - 
R_1^2) \theta \!
yang merupakan luas sebuah cincin tak utuh.

Keliling lingkaran

Keliling lingkaran memiliki rumus:
L = 2\pi R\!

 Panjang busur lingkaran

Panjang busur suatu lingkaran dapat dihitung dengan menggunakan rumus
L = R \theta \!
yang diturunkan dari rumus untuk menghitung panjang suatu kurva
dL = \int \sqrt{1 + \left( 
\frac{dy}{dx}\right) ^2 } dx \!
di mana digunakan
y = \pm \sqrt{R^2 - x^2} \!
sebagai kurva yang membentuk lingkaran. Tanda \pm mengisyaratkan bahwa terdapat dua buah kurva, yaitu bagian atas dan bagian bawah. Keduanya identik (ingat definisi lingkaran), sehingga sebenarnya hanya perlu dihitung sekali dan hasilnya dikalikan dua.

 Pi atau π

Nilai pi adalah suatu besaran yang merupakan sifat khusus dari lingkaran, yaitu perbandingan dari keliling K dengan diameternya D:
 \pi = \frac K D

Tidak ada komentar:

Posting Komentar